qstack.regression.kernel¶
Kernel matrix computation.
- qstack.regression.kernel.kernel(X, Y=None, sigma=32.0, akernel='L', gkernel=None, gdict={'alpha': 1.0, 'normalize': 1, 'verbose': 0})[source]¶
Compute a kernel between sets A and B (or A and A) using their representations.
- Parameters:
X (numpy.ndarray) – Representation of A.
Y (numpy.ndarray) – Representation of B.
sigma (float) – Width of the kernel.
akernel (str) – Local kernel (‘L’ for Laplacian, ‘G’ for Gaussian, ‘dot’, ‘cosine’).
gkernel (str) – Global kernel (None, ‘REM’, ‘avg’).
gdict (dict) – Parameters of the global kernels.
- Returns:
A numpy ndarray containing the kernel.
Command-line use¶
This program computes kernel.
usage: python3 -m qstack.regression.kernel [-h] --x REPR [--sigma SIGMA]
[--akernel {G,L,dot,cosine,G_sklearn,G_custom_c,L_sklearn,L_custom_c,L_custom_py,myG,myL,myLfast}]
[--gkernel {avg,rem}]
[--gdict [GDICT ...]] [--ll]
[--dir DIR]
Named Arguments¶
- --x
path to the representations file
- --sigma
sigma hyperparameter
Default:
32.0- --akernel
Possible choices: G, L, dot, cosine, G_sklearn, G_custom_c, L_sklearn, L_custom_c, L_custom_py, myG, myL, myLfast
local kernel type: “G” for Gaussian, “L” for Laplacian, “dot” for dot products, “cosine” for cosine similarity. “G_{sklearn,custom_c}”, “L_{sklearn,custom_c,custom_py}” for specific implementations. “L_custompy” is suited to open-shell systems
Default:
'L'- --gkernel
Possible choices: avg, rem
global kernel type: “avg” for average, “rem” for REMatch
- --gdict
dictionary like input string to initialize global kernel parameters, e.g. “–gdict alpha=2 normalize=0”
Default:
{'alpha': 1.0, 'normalize': 1, 'verbose': 0}- --ll
if correct for the numper of threads
Default:
False- --dir
directory to save the output in
Default:
'./'
Note
If you built those docs yourself and the command-line section is empty, please make sure you have installed the right components of qstack.